EMDR and neuropsychological test results: A case study

Posted on Updated on

I have worked as a psychologist for 4 years now, and in two of them I have been Learning EMDR. I use EMDR when I work with trauma, with positive results. To become a specialist in Norway, we must write an article about a subject we choose for ourselves. I wrote it last year, and in december it was accepted. I wrote a case study, and will present the result in the following post. I have tried to translate it from Norwegian, so there might be some writing errors I haven`t spotted. If you do notice anything, please let me know.


EMDR (eye movement desensitization and reprocessing) is a treatment method recommended by APA for post-traumatic stress disorder (PTSD). Shapiro proposed an Adaptive Information Model in 2001, that focus on how EMDR works. New research that combines EMDR with brain scanning, shows direct effect of EMDR. This task wants to look closer on the research related to EMDR and how it functions. It will do this by looking at existing literature, and by describing a patient who was tested with neuropsychological tests before and after EMDR. One hypothesis is that changes reflected on brain scans, might manifest themselves in different neuropsychological test-scores.

  1. Introduction EMDR (eye movement desensitization and reprocessing) is a treatment model developed by F. Shapiro (2001) to treat PTSD. The method entails eye movements while the patient thinks of unpleasant memories, and research shows sustained improvement in patients with PTSD and other mental disorders (Luber, 2010; Solomon & Shapiro, 1997;  Wilson, Becker  & Tinker, 1995, 1997). EMDR is recommended in the APA guidelines as a treatment for PTSD (American Psychiatric Association, 2004), and therapists who are trained in other treatments, such as control-mastery, cognitive behavioural therapy and gestalt therapy have written about how EMDR has been an important adjunct in their treatment (Manfield, 1998). Research shows that EMDR leads to reduction of PTSD symptoms (Foa et al., 2009), and there are several hypotheses that seek to explain how EMDR works (Popper & Christman, 2008; Shapiro, 2001 & Pagani et al., 2013). This abstract will look at different explanatory models.

Shapiro presented the Adaptive information processing hypothesis (AIP) in 2001 to explain how EMDR might work. Brain scans have tried to confirm or deny Shapiro`s hypothesis (2001; Harper, Rosolkhani-Kalhorn & Drozd, 2009). If there are structural and functional on brain scans before and after EMDR, it will be interesting to investigate whether this also may be related to better results on neuropsychological tests. Patients with brain injuries cost society large sums (Humphreys et al., 2013). Research shows that treatment of cognitive impairments in schizophrenic, is cost-effective (Reeder et al., 2014; Hogarty, 2004). One finds similar results on cognitive improvement programs that focus on AD / HD, depression and eating disorders (Steveson, 2002; O`Connell et al., 2006; Tchanturia et al., 2008). The task will go into depth on how EMDR affects cognitive function by focusing on earlier research, and by discussing a patient who has been tested with neuropsychological tests before and after EMDR. The working hypothesis is that treatment with EMDR, will be reflected on neuropsychological tests scores. In that regard, this abstract is just intended as an example and weaknesses of a small study like this will discussed.

Research on EMDR and brain

Uri Bergman has summarized recent research on EMDR and brain in the book neurobiological foundations for EMDR practice. He points out that much basic research on the brain is done, but what is lacking is to integrate the knowledge with clinical research. Susan Hart (2012) indicate the same in “Neuroaffective psychotherapy with adults,”. She writes that neuropsychology is an important supplement for understanding and improving clinical treatment approaches. Research on this integration, is still in its infancy, but this abstract will investigate studies that do exist. A recent summary of all the research that has been done over the past three years by Pagani, Högberg, Fernandez & Siracusano (2013) shows that despite the fact that there are still relatively few studies of EMDR and how EMDR works on PTSD, the summarized research show that EMDR is the only form of psychotherapy that have shown significant changes on brain scans.

Brain Imaging Techniques: There are two main categories of brain scanning methods. The first includes electromagnetic techniques, which has good temporal resolution. This makes it easier to detect when something happens in the brain. EEG (electroencephalography), ERP (event-related potential) and MEG (magnetoencephalography) fall within this category. The second group consists of scanning methods that are more sensitive to WHERE in the brain something happens. This is examined either by measuring the difference in blood flow in the brain, or changes in metabolism. Techniques that fall in this category are fMRI (functional magnetic resonance imaging), SPECT (single photon emission computed tomography), PET (positron emission tomography) and NIRS (near-infrared spectoscopy). There are advantages and disadvantages with both (Cabeza & Nyberg, 2000). The task will show studies done EMDR using brain scanning techniques that fall within both categories.


A study examined 14 patients who received EMDR treatment using EEG. The study found no change in EEG after using EMDR (Samara et al, 2011). Other studies have demonstrated changes using EEG (Christman et al., 2003, Elofsson et al., 2008). A study conducted by Pagani et al. (2013), tested 10 patients with EEG while they received treatment with EMDR. They were compared with a group of 10 individuals who did not meet criteria for PTSD. This study is important because it directly examined changes in the brain during EMDR. EEG showed differences in activation of frontal areas after EMDR.


Six policemen who developed PTSD after shootings at work were evaluated with brain scans (SPECT) before and after treatment. It turned out that all got better from EMDR treatment, which also coincided with changes in the brain. Activity in the left and right occipital lobe, parietal lobe, left and right precentral frontal lobe went down. There was also greater blood flow to the left inferior frontal gyri. One of the biggest SPECT studies with EMDR is carried out so far is Pagani et al. study of blood flow after EMDR in 2007. 15 patients with PTSD were scanned before and after treatment with EMDR. A control group which had experienced the same trauma, but which had not developed PTSD were also scanned before and after with SPECT. It turned out that those treated with EMDR had a normalization of blood flow in parieto-occipital lobe, visual cortex, normalization in the hippocampus and increased activity in the lateral prefrontal cortex

3. Hypotheses concerning how EMDR Works
Adaption integration hypothesis: In 2001, Shapiro came with the adaptation integration hypothesis (AIP) to explain why EMDR works. This hypothesis indicates that it is the integration of different networks, that leads to change. Harper, Rasolkhani-Kaòhorn & Drozd (2009) are more specific, by pointing out that activating AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole) receptors blocks the transfer of pathological memories to the anterior cingulate cortex (ACC) from the amygdala. A study by Bender, Bender, Brasier & Feldman in 2006 shows that direct stimulation of AMPA receptors, delete traumatic memories in animals, and Pagani et al. (2013) points out that this stimulation is similar to the stimulation given by EMDR. A case study of a bipolar patient, where fMRI was used before and after EMDR, showed changes indicating reactivation of a defective neural network (Landin-Romero et al., 2013). A study from the Park, Park, Lee & Chang (2012) showed changes in plasma levels of BDNF (brain dirived neurotropic factor) after eight men with complex PTSD got eight hours of EMDR. BDNF may thus conceivably be of importance for improvement. Corks & Christman (2008) refers to research that shows a clear improvement in episodic memory (tested with various memory tests) after EMDR.

Orienting response

Armstrong and Vaughan (1996) put forward an orientation response hypothesis on how EMDR works. An orientation response occurs when it is necessary to look for new information in the environment. This is a reflex that has been important for primates through evolution, because it moves the attention to new opportunities or threats, providing a physiological feedback to the body that indicates whether the situation is safe or not. Stick Gold (2008) hypothesized that this orientation response is activateded during REM sleep.

Increased interaction between hemispheres:

Christman, Garvey, Propper & Phaneuf (2003) conducted a study in which they used both horizontal and vertical movements to test effect on retrieval of episodic memories. They found that it was only the horizontal movements that led to increased retrieval of episodic memory, which supports the integration occurs through interaction between the hemispheres. Corks & Christman (2008) writes that increased interaction between the hemispheres in itself leads to less stress, which may also explain how EMDR works. A study by Gunter & Bodner (2008) found lack of support for hypothesis mentioned, because both horizontal and vertical eye movements reduced discomfort by traumatic memory, which supports the working memory hypothesis and not increased interaction between the hemispheres.

Corks & Christman (2008) points out that more research is needed that focuses on other forms of bilateral stimulation, before one can say anything more about how EMDR works.


Working Memory Hypothesis:

One of the hypotheses related to how EMDR works, is research that examines whether the use of working memory leads to reduced discomfort by recalling memories. When the traumatized both must follow finger movements, while keeping the traumatic memory in memory, this requires resources that provide less space to store a living representation of memory. This in turn reduces the emotional discomfort (Engelhart, van den Hout, Janssen van der Beek, 2010). Using the visual and spatial components of working memory, is more demanding for working memory than other forms of information (Andrade Kavanagh & Baddeley, 1997). A study showing that use of working memory leads to decreased discomfort. Hornsveld (2010) tested three groups who had memories associated with loss. Some would recall memories while they conducted eye movements, some only recall, and some recall while they listened to music that was associated with relaxation. The group that performed eye movements improved more than those that just recalled or listened to music, suggesting that the use of working memory through eye movements was what had an effect. Engelhard et al. (2010) wrote that people with lower working memory capacity who had to perform mathematical calculations, improved more when they thought of unpleasant memories, than those who had greater capacity. They also underline that if the memory-load becomes too large, there will be no capacity left to hold the unpleasant memory, which will therefore not cause any effect. Van den hout et al (2010) did a meta-analysis of research done so far, pointing out that the working memory hypothesis has most of the support today. They have done studies that indicate that the discomfort of memories will be reduced when working memory load increases, for example, when patients must count backwards while recalling unpleasant memories.

  1. Case Description

Presentation of the patient:

The patient is a woman in her fifties functioning normally until the early 2000s when she was in a car accident. The patient had a traumatic childhood, but had no psychiatric history before the crash. One study show (Kopnen, S, Taimin & Portin R, 2002) that almost half of a group of car accident victims, had received an axis 1 diagnosis 30 years after the accident.

After the accident she started to cut herself, was suicidal, dissociated, had a restrictive food intake and was admitted to both hospital and outpatient care. In the period 2005-2010 she was more hospitalized than home. Her longest hospitalization lasted for 1.5 years. The woman was near death due to hypokalaemia, and she had several suicide attempts until four years ago. Four years after the accident, she got divorced after a long marriage. Before the car accident the patient was a mother of four, in a good marriage, had an active life both inside and outside the home. She and her husband also had children in foster care. The woman was diagnosed with Atypical Anorexia Nervosa, severe type. She was hospitalized at a trauma unit in Norway twice a few years ago. After this she was followed up locally and had weekly outpatient consultations. The patient has been examined by experts in connection with insurance claims, and the findings suggest brain damage as a result of the car accident. The accident is seen as the cause of subsequent symptoms that were not present before the accident, despite traumatic upbringing. The patient describes a lethargy which according neuropsychologist corresponds to damage to the left frontal lobe. Generally, it appears that cognitive residual symptoms often occur after head injuries in car accidents (Murray & Lopez, 1997).

In February 2014 the patient showed clear improvement psychologically. This has been confirmed clinically, through questionnaires, through and through information from others. The patient still had cognitive residual symptoms, which could not be explained on the basis psychological difficulties.

  1. Method, neuropsychological testing:
  2. The tests the patient took included samples of sensory-motor function (Grooved Pegboard Halstead-Reitan), attention functions (tal-memory of WAIS-IV, spatial memory span of WMS III, Trail-making test and Stroop D-KEFS), cognitive speed (memory mapping from Rban), verbal abilities (WAIS-IV and the memory tests from RBAN) and executive functions (Wisconsin Card Sorting Test). The neuropsycholgoist also tested her With WAIS-IV (an intelligence test).

Findings from neuropsychological testing the 14/01/14

On fine motor coordination, she has large side differences in disfavor of the right hand (which supports the hypothesis of a injury on the left side). The patient still has difficulty with balance, in spite of frequent sessions With a physiotherapist in addition to physical exercise. When she walks outside, she can easily “fall” to the right.

On ability tests, the patients verbal scores is in the middle of the normal range, somewhat lower scores on verbal abstraction. Non-verbal samples were located in the upper normal range. Samples of working memory is variable but generally low. On a selection of attention tests she scores low. She has normally good scores on a 5-divided visuospatial test which requires cognitive shifts, and scores in the upper normal range and over on a verbal flow task. Samples of cognitive speed is variable, from the lower normal range to above the normal range. Impulse control is under age expectation. A task with sustained attention is also below expectation for her age. Two samples of immediate memory gives scores in the low border areas. On recent memory she has scores well below the threshold area. On all the tests she uses a lot of time when tasks are difficult, but she can be systematic. She “falls out” relatively regularly, both on verbal and non-verbal tests.

Conclusion neuropsychological testing the 14/01/14:

The testing was done on a woman in her fifties who was in a car accident. The test results show impaired memory, attention and concentration. She also had problems with immidiate and retrieved memory.

This will make daily life harder for the patient. She will notice the cognitive problems in everyday activities depending on cogntive functions. She will have problems with learning new things, and have low energy levels.

  1. Treatment with EMDR

The patient had regular conversations with me since January 2013. She received 30 sessions, and despite regular improvement, still had problems with cognitive functions. The focus of this abstract is five hours with EMDR. The layout is as follows: First we find a target memory (target), then focus on the sensations in the body, while measuring discomfort and identifying emotions related to the memory. The aim of processing is to reduce the mental discomfort related to the unpleasant memory.

In the treatment two scales to measure subjective changes, were used. This was SUD (Subjective units of distress) and VOC (validity of cognition). The SUD goes from 1-10 and the VOC from 1-7. To begin with the discomfort (SUD) is normally high, and through processing with EMDR, the SUD normally falls. When working with SUD and VOC, we install an alternative positive thought that can replace her negative thought. The standard protocol of Shapiro (2001) was used during processing.

Installation of mental resource: 01/23/14:

The purpose of the resource installation: Helping the patient to endure the discomfort without using an avoidance strategy. The patient remembers that she always felt calm when she saw eagles flying in. She wanted to imagine that she flied like an eagle. I did several short sets of eye movements, to strengthen the link between peace and the feeling of being an eagle flying. The patient almost feels like an eagle, and is completely calm after several sets of eye movements. She scores 1 on SUD when processing ends.

Target Memory 1 EMDR: 05.03.14

The first unpleasant memory we started working on is that she lies in bed, hearing her parents argue. She feels a lot of discomfort when she thinks about this. Through eye movements she works chronologically through the event. She begins with the fear she felt in bed, and feels like a small child here and now (shrinks together in the chair). The discomfort decreases steadily, until she is down 1 on discomfort scale. Her negative thought was: “It’s my fault.” At the end the negative thought feels untrue. The thought “I was just a kid, and it was not my fault.” gets a rating of 6 on the VOC scale.

Target Memory 2 EMDR: 04.10.14

We started the session by examining previous target for any residual discomfort. She tells me that she hasn`t  thought about the unpleasant memory since the previous session. No discomfort arise when she thinks about it in the session, but she notices she still worries about whether she is good enough, especially as grandmother. When I use the “body scan”, her discomfort is down to zero when she thinks back on the quarrel between her parents.

The target we work on in this session is an unpleasant memory attached to a bus tour where she was afraid of a man (details omitted for anonymity reasons). The discomfort is high (7-8) when processing starts. She feels fear in the stomach and chest. The discomfort goes down eventually, and the picture becomes less threatening. There is still some discomfort (2/3) left at the end of the session.

Target Memory 3 EMDR: 23.04.14

We start with examining the previous target: She has not thought about the specific memory or experienced flashbacks since the last session. But in her life, things have happened that has reactivated other unpleasant memories. One of these is the target for treatment: How she feels when her father criticizes her. Her negative cognition is “I am not confident”. Discomfort is according to the patient 15 on a scale from 1-10 scale when we start processing the target.

The discomfort decreases during processing. First her discomfort goes down to 5, and after a while she gets thoughts and images that make her feel stronger, while her father appears as “weaker.” The patient experiencing a reversal, where her mental image of father, actually “shrinks”. She also feels like the image becomes more distant. At the beginning of the processing it’s hard to breathe, but after a couple of eye-movements her breathing becomes normal. According to the patient, she starts to feel free, and is not so tense anymore. At the beginning of the processing, she had tendencies of dissociating (freeze state)  but the feeling of paralysis decreases when we reduce the discomfort of the memory. At the end of our session her discomfort was below zero and she feels that it is absolutely true that she is safe, when she thinks back on the target.

Target Memory 4 EMDR: 05/02/14.

The session lasts 2×45 minutes. There is no remaining discomfort from the previous target. The target for this session is a specific episode from the last week with her mother, when she had to clean a cottage and her mother commented that she did a poor job. The discomfort is 8-9 at startup and the negative thought is “I have no value.” The positive cognition is: “I have value.” At the beginning she feels like a 15 year old who must fight for her rights. She says it feels like a betrayal, that her mother still does not let her decide for herself. After some sets of eye movements, her discomfort decreases. Her discomfort decreases further, and she gets more positive thoughts, like that her brother takes good care of her parents now, and she does not need to take care of them all the time. The discomfort goes down to zero, and the thought “I have value” feels completely true at the end of the session. When I do the body scan, she feels completely relaxed, and she says that the turmoil in her chest, is now gone.

Results neuropsychological testing 28.05.14

A week before the neuropsychological examination the patient was on a trauma unit for a planned 1 week follow-up. She describes this as difficult. She still satisfied the criteria for an eating disorder, but otherwise she showed improvements.

From neuropsychological report:

Tests that were taken were Grooved Pegboard from the Halstead Reitan battery, number-memory of WAIS-IV, spatial memory span of WMS III, Trail-making test from Stroop, D-KEFS, symbol search and coding of WAIS-IV, memory mapping from Rban, figure copying and memory tests from Rban.

The previous testing 14.01 shows that the patient has a15 points improvement on immediate memory. Delayed recall has also gone up by 34 index points (Rban). She shows more uneven results on samples requiring cognitive efficiency, and has a slight decline on a visuospatial tasks requiring cognitive shifts, some decline and some increase of verbal fluency, and a sample with requirements for impulse control show lower results. Measure speed has gone down two scaled scores on two different samples. A sample of working memory is similar to previous testing, another test is somewhat lower.

Estimate: In summary, at the second testing there is still a somewhat uneven result when it comes to cognitive efficiency, while memory tests are clearly better.


Neuropsychological tests are affected by how you feel. The patient had a bad week when she was tested for the second time, and this could have influenced her and made her performance worse. The woman underperformed on most tests, but not on the memory tasks. Better results on Rban is significantly better than expected with regards to the first testing and that she did poorly on other tests. This is interesting considering further research.

  1. Weaknesses of the task and the presentation of the case:

There is still little research on EMDR and how EMDR works. It is conceivable that there are other variables than eye movements that work, including alliance with the therapist. Although patients scored better on neuropsychological testing after EMDR, one person is not enough to draw any conclusions about the population as a whole, as the improvement on memory functions might be due to other factors (Lofthus & Guyer, 2002). The improvement on memory tests are significant, which supports the hypothesis that improvement is not due to chance. To say more about this effect, more patients must be tested. Research also requires a control with previous trauma and brain damage (preferably in the frontal areas) that have had normal trauma treatment (cognitive therapy). The two Groups would then have to be tested with neuropsychological tests before and after treatment. To get a clearer result, preferably up to 200 people should be compared with each other. This is a comprehensive project that will take time, but this case study could help to establish a hypothesis for future research. As mentioned earlier, a summary of research in recent years show that EMDR causes changes that can be seen on brain scans (Pagani Högberg, Fernandez & Siracusano, 2013), but no research is done on whether this leads to better results on neuropsychological tests. Basic research on PTSD and neuropsychological testing, suggesting that patients with PTSD score lower on neuropsychological tests of verbal memory, attention and visual memory (Samuelson, Metzler, Rothlind, Choucroun, Neylan, Lenoci & Clare Henn-Haase, 2006). Another issue is that the patient had a complex psychiatric history after the car accident. She developed an eating disorder, depression, anxiety and had several hospital admissions due to intoxications and self-harm. It can be difficult to find more people with a similar symptom picture. It is also conceivable that those who wish to participate in research, differs from those who do don`t. It might be that attention in itself, helps to improve the function and thus result in neuropsychological tests. In this regard, it should be emphasized that usually the test-retest reliability is good in patients with brain damages (Calamie, Markon & Tranel, 2013). For this reason it is interesting that the woman had a marked improvement on memory tests from RBAN.
Moreover, other studies have tested the patient before and after EMDR with symptom checklists. This was not done in this task, and it is conceivable this would have contributed to the understanding of changes in test results. According to the patient she has been stable in mental function in the months of the study; She followed her eating plan, did not harm herself, and managed to regulate emotions and behavior in an appropriate manner. The patient was not depressed or anxious.

The EMDR treatment was conducted over four months, with five targets including resource installation. This is a small number of targets, and the therapist did not always get the discomfort down to zero in regards to the unpleasant memories. It is important to process the target so that the discomfort is zero, but Manfield (1998) points out that this is not always possible. Nevertheless, further research should work towards reducing the discomfort to zero, and the positive thought should feel completely true. It would also be preferable to process more than just 5 targets.
The patient was a woman in her fifties. It would be interesting if patients in other age groups would responded similarly, as research indicates normal changes in executive functions by aging (Treitz, Heider & Daum, 2007).


American Psychiatric Association (2004). Practice Guideline for the Treatment of Patients with Acute Stress Disorder and Posttraumatic Stress Disorder. Arlington, VA: American Psychiatric Association Practice Guidelines.

Andrade, J., Kavanagh, D. and Baddeley, A. (1997). Eye-movements and visual imagery: a working memory approach to the treatment of post-traumatic stress disorder. British Journal of Clinical Psychology, 36, 209–223.

Armstrong, M. S. and Vaughan, K. (1996). An orienting response model of eye movement

desensitization. Journal of Behavior Therapy and Experimental Psychiatry, 25, 283–291.

Bender, V. A., Bender, K. J., Brasier, D. J., & Feldman, D. E. (2006). Two coincidence detectors for spike timing in somatosensory cortex. Journal of Neuroscience, 26, 4166-4177

Bisson, J., Roberts, N.P., Andrew, M., Cooper, R., & Lewis, C. (2013).  Psychological therapies for chronic post-traumatic stress disorder (PTSD) in adults (Review). Cochrane Database of Systematic Reviews DOI: 10.1002/14651858.CD003388.pub4

Bremner, J. D. (2007). Functional neuroimaging in post-traumatic stress disorder. Expert Rev Neurother, 7, 393-405. doi: 10.1586/14737175.7.4.393

Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47.

Calamia, M., Markon, K., & Tranel, D. (2013). The Robust Reliability of Neuropsychological Measures: Meta-Analyses of Test–Retest Correlations. The Clinical Neuropsychologist, 27:7.

Christman, S. D., Garvey, K. J., Propper, R. E., & Phaneuf, K. A. (2003). Bilateral eye movements enhance the retrieval of episodic memories. Neuropsychology. 17, 221-229.

Christman, S. D., Propper, R. E., & Brown, T. J. (2006). Increased interhemispheric interaction is associated with earlier offset of childhood amnesia. Neuropsychology, 20, 336.

Davies H., & Tchanturia K. (2005). Cognitive Remediation Therapy as an intervention for acute Anorexia Nervosa: A Case Report. European Review of Eating Disorders. 13, 311-316

Davidson, P. R., & Parker, K. C. H. (2001). Eye movement desensitization and reprocessing (EMDR): A meta-analysis. Journal of Consulting and Clinical Psychology, 69, 305-316.

Elgamal, S., McKinnon, M. C., Ramakrishnan, K, Joffe, R. T., & MacQueen, G. (2007). Successful computer-assisted cognitive remediation therapy in patients with unipolar depression: A proof of principle study. Psychol Med., 37 (9), 1229-38

Elofsson, U.O.E., von Scheele, B., Theorell, T., & Sondergaard, H.P. (2008). Physiological correlates of eye movement desensitization and reprocessing. Journal of Anxiety Disorders, 22, 622-634.

Engelhard, I. M., van den Hout, M. A., Janssen, W. C., & van der Beek, J. (2010). Eye movements reduce vividness and emotionality of «flashforwards». Behaviour research and therapy, 48, 442-447

Foa, E. B., Keane, T. M., Friedman, M. J., & Cohen, J. A. (2009). Effective Treatments for PTSD, Practice Guidelines from the International Society for Traumatic Stress Studies. Guilford. pp. 3, 279–305.

Gunter, R. W. and Bodner, G. E. (2008). How eye movements affect unpleasant memories: support for a working memory account. Behaviour Research and Therapy, 46, 913-931.

Harper, M. L., Rasolkhani-Kaòhorn, T., & Drozd, J. F. (2009). On the neural basis of EMDR therapy: Insights from qEEG studies. Traumatology, 15, 81-95.

Hart, S. (2012). Neuroeffektiv psykoterapi med voksne. Hanz reitzlers forlag, Viborg A/S

Ho, M. S. K., & Lee, C. W. (2012). Cognitive behavior therapy versus eye movement desensitization and reprocessing for post-traumatic disorder – is it all in the homework then ?

Revue européenne de psychologie appliquée. 62: 253-60.

Hogarty,, G. E. (2004). Cognitive Enhancement Therapy. Arch Gen Psychiatry. 61: 866-876

Hornsveld, H. K., Landwehr, F., Stein, W., Stomp, M. P. H., Smeets, M. A. M. & van den Hout, M. A. (2010). Emotinality of Loss-related memories is reduced after recall plus eye movements but not after recall plus music or recall only. Journal of EMDR practice and research, 4 (3).

Humphreys, I., Wood, R. L., Philips, C. J., & Macey, S. (2013). The cost of traumatic brain injury: A literature review. Clinicoecon Outcomes Res., 5, 281-287

Johnsen, G. E., Kanagaratnam, P., & Asbjørnsen, A. E. (2011). Patients with Posttraumatic Stress Disorder Show Decreased Cognitive Control: Evidence from Dichotic Listening. Journal of the International Neuropsychological Society, 17(2), 344-353.

Landin-Romero, R., Novo, P., Vicens, V., McKenna, P. J., Santed, A., Pomarol-Clotet, E., . . . & Amann, B. L. (2013). EMDR therapy modulates the default mode network in a

subsyndromal, traumatized bipolar patient. Neuropsychobiology, 67(3), 181-4.

Lanius R. A., Bluhm, R., Lanius, U., & Pain C. (2006) A review of neuroimaging studies in PTSD: Heterogeneity of response to symptom provocation. J Psychiatr Res, 40:709-


Lansing, K., Amen, D. G., Hanks, C., & Rudy L (2005). High-resolution brain SPECT imaging and eye movement desensitization and reprocessing in police officers with PTSD. J Neuropsychiatry Clin Neurosci 17: 526–532. doi: 10.1176/appi.neuropsych.17.4.526

Lee, W. L., & Cuijpers, P. (2013). A meta-analysis of the contribution of eye movements in processing emotional memories. J Behav Ther & Exp Psychiat 2013; 44: 231–9.

Lehtonen, S., Stringer, A. Y., & Millis, S. (2005) Neuropsychological outcome and community re-integration following traumatic brain injury: the impact of frontal and non-frontal lesions. Brain Inj. 4;19: 239-256

Lilley, S. A., Andrale, J., Turpin, G., Sabin-Farrell, R. & Holmes, E. (2009). Visuospatial working memory interference with recollections of trauma. British Journal of Clinical Psychology, 48, 309-321.

Loftus, E. F., & Guyer, M. J. (2002, May/June). Who abused Jane Doe? The hazards of the single case history. Skeptical Inquirer, 26, 24-32.

Manfield, P. (1998). Extending EMDR. A casebook of innovative applications.

New York: W. W. Norton & Company, Inc.

Murray, C. J., & Lopez, A. D. (1997).

Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet., 349 (9064):1 498-504.

Nardo, D., Högberg, G., Lanius A. R., Jacobsson. H., Jonsson, C., Hällström, T., & Pagani, M. (2013) Gray matter volume alterations related to trait dissociation in PTSD and traumatized controls. Acta Psychiatrica Scandinavica. 128(3): 222-233.

Pagani, M., Högberg, G., Fernandez, I., & Siracusano, A. (2013) “Correlates of EMDR Therapy in Functional and Structural Neuroimaging: A Critical Summary of Recent Findings.” Journal of EMDR Practice and Research. Springer. 2013. HighBeam Research. 14 Apr. 2014

Pagani, M., Högberg, G., Salmaso, D., Nardo, D., Tärnell, B., Jonsson, C., . . . Sundin, Ö. (2007). Effects of EMDR psychotherapy on 99mTc-HMPAO distribution in

occupation- related post-traumatic stress disorder. Nuclear Medicine Communications, 28, 757-765.

Propper, R., Pierce, J. P., Geisler, M.W., Christman, S.D., & Bellorado, N. (2007). Effect of bilateral eye movements on frontal interhemispheric gamma EEG coherence: Implications for EMDR therapy. Journal of Nervous and Mental Disease, 195, 785-788..

Propper, R. E. & Christman, S. D. (2008). Interhemispheric interaction and saccadic

horizontal eye movements: Implications for episodic memory, EMDR, and PTSD.

Journal of EMDR Practice and Research, 2, 269-281.

Reeder, C., Harris, V., Pickles, A., Patel, A., Cella, M., & Wykes, T. (2014). Does change in cognitive function predict change in costs of care for people with a schizophrenia diagnosis following cognitive remediation therapy? Schizophrenia Bulletin, 40 (5). doi:10.1093/schbul/sbu046

Samuelson, K. W., Metzler, T. J., Rothlind, J., Choucroun, G., Neylan, T. C., Henn-Haase, C., Weiner, M. W., & Marmar, C. R. (2006). Neuropsychological functioning in Posttraumatic Stress Disorder and Alchohol Abuse. Neuropsychology, 20(6): 716-726

Shapiro, F (2001). Eye Movement Desensitization and Reprocessing: Basic Principles, Protocols, and Procedures. Guildford Press. ISBN 1-57230-672-6

Shapiro, F (Ed.) (2002). EMDR as an Integrative Psychotherapy Approach: Experts of Diverse Orientations Explore the Paradigm Prism. APA. ISBN 1-55798-922-2

Shapiro, F. (2012). Getting Past Your Past: Take Control of Your Life with Self-Help Techniques from EMDR Therapy. New York: Rodale. ISBN 1-59486-425-X

Samara, Z., Elzinga, B. M, Slagter H. A., & Nieuwenhuis, S.(2011). Do Horizontal Saccadic Eye Movements Increase Interhemispheric Coherence? Investigation of a Hypothesized Neural Mechanism Underlying EMDR

Front Psychiatry. Prepublished online 2011 doi: 10.3389/fpsyt.2011.00004

Solomon, R., & Shapiro, F. (1997).  Eye movement desensitization and reprocessing:  An effective therapeutic tool for trauma and grief.  In C. Figley (Ed.) Death and trauma.  New York: Taylor & Francis

Solomon, R. M., & Shapiro, F, (2008). EMDR and the adaptive information processing model: Potential mechanisms of change. Journal of EMDR Practice and Research, 2, 315-325.

Steele, J. D., & Lawrie, S. M. (2004). Segregation of cognitive and emotional function in the prefrontal cortex: A stereotactic meta-analysis. Neuroimage, 21, 868-875.

Steveson, C. S. et al. (2002). A cognitive remediation programme for adults with Attention Deficit Hyperactivity Disorder. Aust N Z J Psychiatry, 36 (5): 610-616

Stickgold, R. (2008) Sleep-Dependent Memory Processing and EMDR Action. J EMDR Pract Res, 2: 289-299. doi: 10.1891/1933-3196.2.4.239


Treitz, F. H., Heyder, K., & Daum, I. (2007). Differential course of executive control changes

during normal aging. Aging, Neuropsychology, and Cognition, 14, 370-393.


Van den Hout M. A., Engelhard I. M., Smeets M. A. M., Hornsveld H., Hoogeveen E., de Heer E., et al. (2010) Counting during recall: Taxing of working memory and reduced vividness and emotionality of negative memories. Applied Cognitive Psychology., 24, 303-311


2 thoughts on “EMDR and neuropsychological test results: A case study

    […] EMDR and neuropsychological test results: A case study […]

    Five wishes « Mirrorgirl said:
    July 24, 2016 at 19:27

    […] Doing research on EMDR […]

Your thoughts matter:

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s